Quarterly Program Review October 23, 2001 Golden, CO

Distributed Utility Integration Test DUIT

DUA

Endecon Engineering

PG&E

Exelon (PECO)

CEC

Salt River Project

Encorp

Caterpillar

Solar Turbines

Onsite Energy

SMUD

Niagara Mohawk

Distributed Utility Integration Test

- 1) Build a team
- 2) Document appropriate technologies
- 3) Document features of appropriate site(s)
- 4) Develop a project plan
- 5) Develop project plan for DUIT facility at Nevada Test Site
- 6) Design testing skid(s) and Recruitment of Industry partners for testing at NTS
- One year contract Completion scheduled Fall, 2001
- **ℚ** NREL Technical Monitor: Ben Kroposki

Deliverables Task 1-6

Deliverable Description

Concept Paper on DUIT (Task 1)

Site Assessment Report (Task 2)

Technology Selection Report (Task 3)

Detailed Project Plan for DUIT (Task 4)

Detailed Project Plan for NTS (Task 5)

Mobile Skid (Task 6)

<u>Due</u>

Complete

Complete

Complete

11/25/01

11/30/01

Fall, 2001

Design Mobile Skid

- **Q** Design delivery package
 - DG unit
 - Interconnection
 - Interface equipment
 - Electrical quick-connection apparatus
 - Integrated fuel storage
 - Industry partners to participate in characterization and field testing of DG

Task 4: DUIT Project Plan

DUIT Plan:

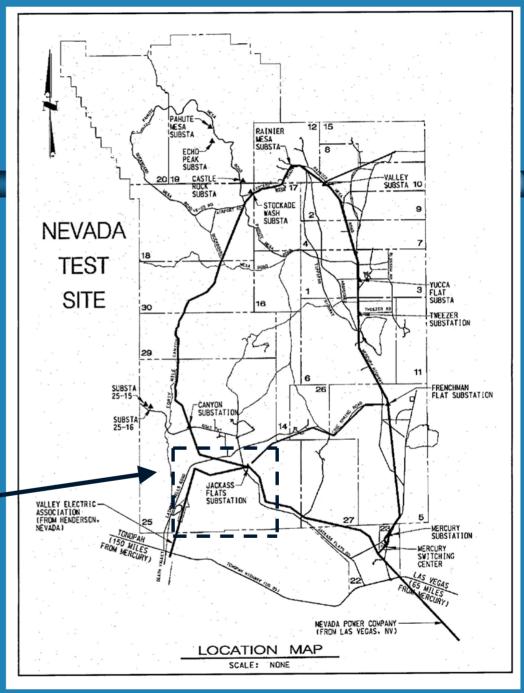
- **∂** Site specification
- ର Test plan
- ର DAS requirements
- **∂** Costs and schedule

Test Plan: Issues for All Tests

- **∂** High vs Low DR penetration levels
- **Ω** DR a a nuisance vs DR as a resource
- **Solution** Interaction between different distributed resources
- **∂** Distributed resource types
 - Rotating: synchronous and induction
 - Inverter-based
- **⊘** Control aggregation
- **Ω** Scalability
- Single vs 3 phase
 - DR, faults other events

Testing Plan

- **Anti Islanding**
- **Notage Regulation**
- **Sectionalizing Devices**
- a Reclosing
- **Synchronization**
- **Short Circuit Current**
- **a Stability**
- *A* Fuses Coordination


Test Plan Development

- **Reviewed numerous documents related to DR:**
 - IEEE 1547, IEEE 929, UL 1741
 - EEI DR Task Force Interconnection Study (29 Issues)
 - California, New York, Texas, and other existing interconnection rules
- Discussed issues within the DUIT team and with many other utility engineers and equipment providers
- **a** Developed a series of test protocols

Task 5: NTS

Distributed
Power Test and
Demonstration
Plan

Area 25

NTS Area 25

- The site was identified as a potential test facility with existing assets:
 - Unused, minimally restricted 2.5 MVA substation and overhead distribution line
 - Local connected building load
 - Indoor facilities for office, communication and data acquisition
 - Large inventory of miscellaneous DG hardware including Diesel gensets, load banks, distribution level switchgear
- After reviewing test plan requirements, it was decided that the test site could be used to support ambitious distribution system testing
- **Q** Comprehensive test facility, flexible, distribution voltage and real world feeder test facility

DUIT Test Facility - Attributes

- **⊘** Co-location of distributed resources and loads
- Distribution field can be configured as a network system
- **Nakes use of NTS material and personnel**
- **ℚ** Flexible DAS for monitoring DR and loads
- Conducive to annual upgrades and project phasing

Two Fundamental Considerations that Drive the Facility Design

Testing at distribution voltages vs. low voltages

Clearly some tests can adequately be performed at low voltage – but some cannot

Nagging question – how do low voltage results transfer to distribution voltages?

Real World (distributed parameter) feeder - lumped parameter approximation of short, medium, and long feeder

Lumped parameter feeder cost s approximately the same as real world feeder with less flexibility

Nagging question – how do results transfer to a "real" distribution system?

Conclusion: The proposed real world feeder and voltage levels eliminate the nagging questions and add certainty in the test results

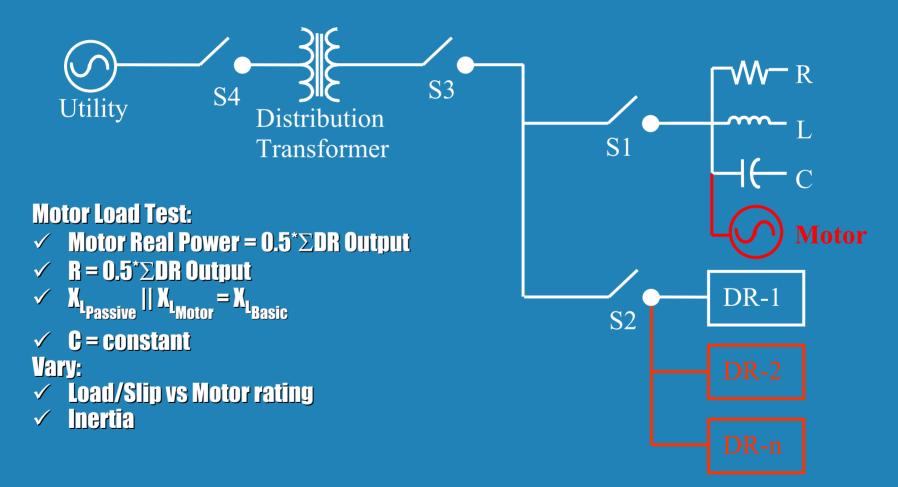
Test Protocols

Test Protocols - Review

- Test Protocol document was sent to key utilities, manufacturers and other stakeholders for review. Asked reviewers to:
 - Provide feedback on content
 - Identify missing tests or issues
 - Prioritize tests
- *a* 15 respondents
- Received several ideas for test variations
- **OPPRINT NUMBER 1** Prioritization was inconsistent
 - Several utility engineers thought Islanding tests were key while another wondered why we wasted so much ink on Islanding
 - Two issues seem to be of universal concern:
 - Islanding
 - Voltage Regulation

Basic Islanding Test

- **8 Basic Islanding Test**
 - IEEE 1547/929; UL1741
 - Single DR with a passive RLC load
 - No motor or non-linear loads
- **A Motors represent ~60% of the electrical load**
- Ω Motors provide inertia, ability to generate, reactance
- Outilities have expressed considerable concern about this "deficiency"


Islanding w/ Motor Load Test

a Test Objectives:

- To demonstrate performance of anti-islanding schemes, a series of anti-islanding tests will be performed that include rotating loads
- Tests performed at a series of real power levels and mechanical inertias connected to the rotating machine
- Induction and synchronous machine loads, individually and collectively
- **A Key Testing Parameters:**
 - Real and reactive power
 - Mechanical inertial load
- **a** Expected Results:
 - Quantify the effect of RLC+rotating load on trip times for DR with active anti-islanding

Islanding Test Schematic

Q= Load Quality Factor = (1/P) $\sqrt{P_{\eta L}} \times P_{\eta C}$ = 2.5 (\propto PF = 0.37)

Islanding Test with Motor Load: DR Requirements

- Repeat test with a variety of DR using a common islanding detection technique and with DR using differing islanding detection techniques
- ${\mathfrak Q}$ Tests should be done with combinations of single- and three-phase DR

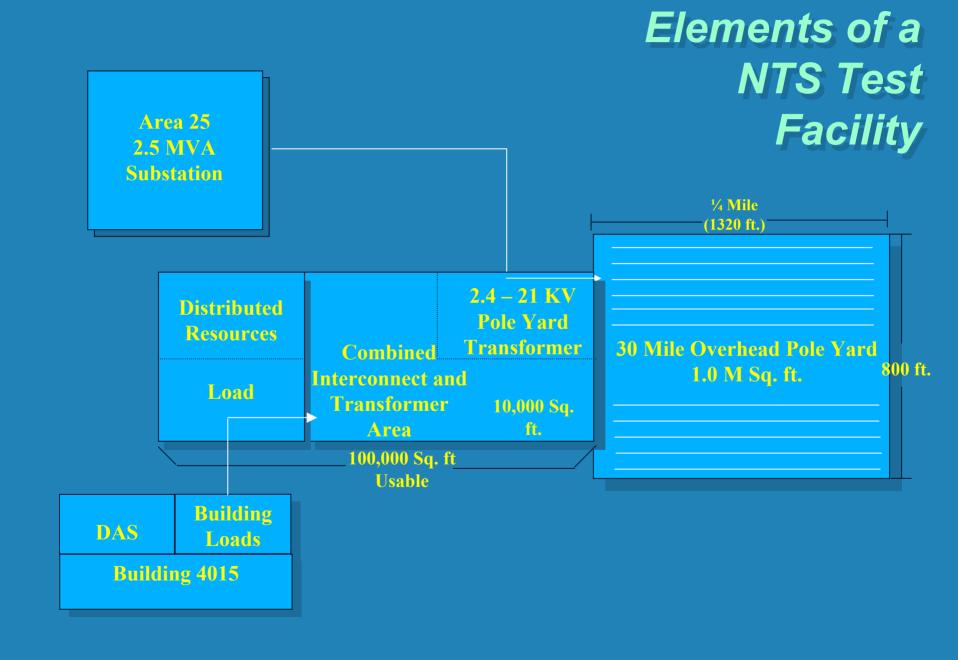
Туре	Qty	Size	Other
Inverter, any prime mover	≥3	2-400 kW	Should have advanced anti- islanding function
Synchronous Generator	≥1	50 – 5mW	Advanced anti-islanding is desirable
Induction Generator	≥1	50 -500 kW	Advanced anti-islanding is desirable

Islanding Test with Motor Load: Data Acquisition Requirements

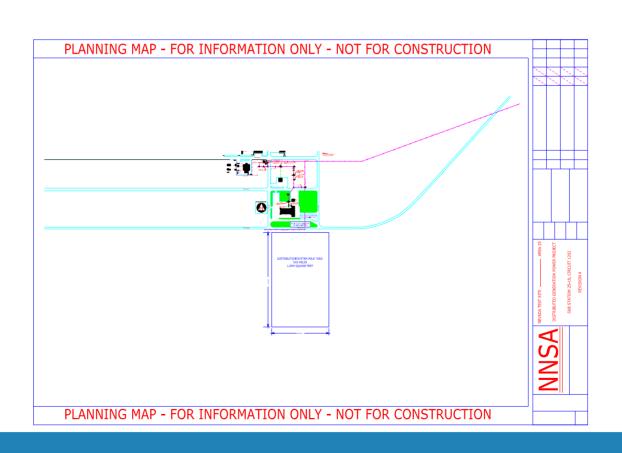
Parameter	Units	Range	Accuracy	Sampling Rate	Recording Rate
Island Contactor Status (i.e. Aux contact closure)	DC Volts	0- 10Vdc	5%	600 Hz	600 Hz
Island Contactor Utility- Side Voltage	AC Volts	0-480	1%	600 Hz	600 Hz
Island Contactor Island- Side Voltage	AC Volts	0-480	1%	600 Hz	600 Hz
DR Output Current (1 per DR)	AC Amps	0-FS	1%	600 Hz	600 Hz
DR Output Voltage, DR side of DR contactor, if accessible	AC Volts	0-480	1%	600 Hz	600 Hz

DUIT Data Acquisition System Criteria

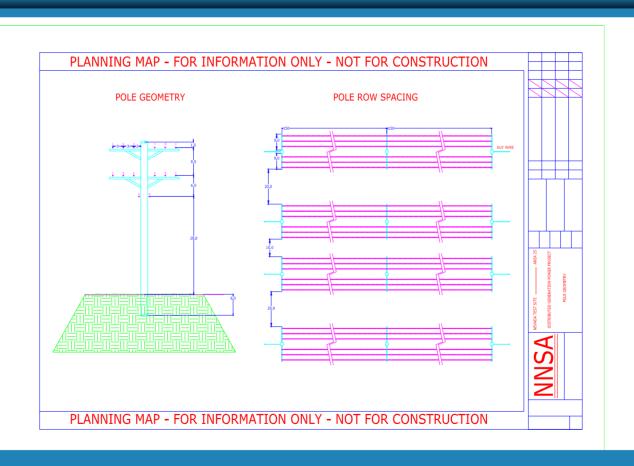
- **ℳ Three Phase Measurement Points**
 - Up to 12 Medium Voltage and 32 Low Voltage
 - Spatially distributed over as much as 500 feet
 - Minimum 10 samples per cycle for islanding tests
 - Up to 50th harmonic needed for special tests
- **Automated load control function required**
 - Repetitious Test Sequencing
- *A* Electronic data record keeping
 - Test configuration data and sampled data must be recorded in an integrated electronic data format
 - Minimize use of paper recordkeeping

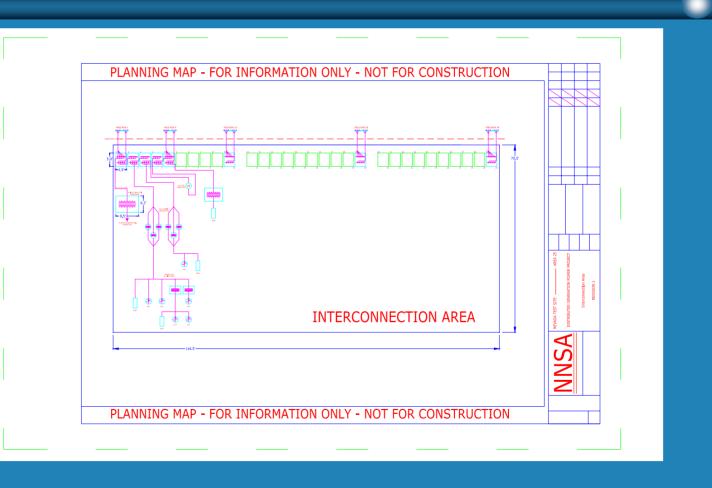

DUIT Data Acquisition System Issues

- arOmega Data rate impact: bandwidth limits from sampling to storage
- **a** Simultaneous sampling
 - Easy to correlate events
 - Expensive hardware to implement
- \mathfrak{Q} Signal Bandwidth Impact: CTs/PTs not spec'd for 50th harmonic
- **Q** Data volume impacts
 - Working disk space
 - Backup/archive media and maintenance
- **Operating Temperature**
 - Desert Location: 60C max ambient
 - Industrial components: 50C operating, 70C non-operating


Data Acquisition System Options

- **a** Commercial PQ system
 - Report-by-exception (concern that not all required data will be recorded)
 - Less expensive hardware
 - Requires significant effort to integrate data records
- arrho Commercial Test and Automation system
 - Complete control of sampling parameters
 - More expensive hardware
 - Larger data storage and longer post-processing times
 - Less integration means more individual components


Nevada Test Site Test Facility


Recommended Site for Construction

Overhead Line Pole and Yard Geometries

Interconnect Area

NTS Bill of Material Summary Feeder Yard and Interconnect Area

Item	Quantity	Description
1	280	45 ft., class 4 pole
2	1120	9 ft cross/alley arm
3	90 miles	397 MCM AAC conductor
4	15 miles	Ground conductor
5	2592	Post insulator /clamp
6	140	Ground Insulator
7	64	Dead end guy wire
8	768	Dead end insulator
9	128	End pole crossarm

Item	Quantity	Description
10	64	Turnaround crossarm
11	8	NEMA 3R termination
12	2 miles	Underground conductor
13		
14		
15		
16		
17		
18		

NTS Facility Cost Estimates

Overhead Pole Yard Materials and Construction ⁽¹⁾ \$1,11	5,0 (U	IJ	L
---	--------------	---	----	---

Interconnect Area Materials⁽²⁾ \$ 132,560

High Speed Data Acquisition System Infrastructure⁽³⁾ \$800,000 Total \$2,047,560

Pricing Sources

- Standard Utility Pricing based on two California utility data bases.
- Switchgear quotation from 2 Suppliers, surface preparation and underground cable installation excluded.
- (3) National Instrument Based System